Загрузка...
Категории:

Загрузка...

Лебедева Екатерина Александровна программа элективного курса находится на рассмотрении в рэс санкт Петербурга аннотация дорогие старшеклассники ! Этот элективный курс

Загрузка...
Поиск по сайту:


Скачать 52.45 Kb.
Дата20.03.2012
Размер52.45 Kb.
ТипЭлективный курс
Содержание
Пояснительная записка
Цель программы
Содержание курса
Подобный материал:

ПРОГРАММА ЭЛЕКТИВНОГО КУРСА ПРОФИЛЬНОЙ ПОДГОТОВКИ УЧАЩИХСЯ 10 – 11 КЛАССОВ


Метод математической индукции


Автор – составитель программы

учитель математики первой категории

ГОУ СОШ № 389 «ЦЭО»

Кировского района СПб

Лебедева Екатерина Александровна


Программа элективного курса находится

на рассмотрении в РЭС Санкт – Петербурга


АННОТАЦИЯ

Дорогие старшеклассники !

Этот элективный курс познакомит вас с одним из методов математического доказательства – методом математической индукции. Вы расширите свои представления об индуктивных и дедуктивных рассуждениях. На занятиях будет показана история возникновения и развития метода математической индукции, его концепция и основные идеи, его значение для математики и других наук и областей практической деятельности.

Данный элективный курс будет полезен тем из вас, кто планирует продолжить углубленное изучение математики в дальнейшем в высших учебных заведениях.

Индукция широко применяется в математике, но делать это надо умело. При легкомысленном отношении к индукции можно получить неверные выводы. Как пользоваться в математике индукцией, чтобы получать только верные выводы? Ответ на этот вопрос вы узнаете на занятиях элективного курса «Метод математической индукции».


^ ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Данный элективный курс рассчитан на учащихся 10 – 11 классов, которые в дальнейшем планируют изучать математику на повышенном уровне в высших учебных заведениях .

Для жизни в современном обществе важным является формирование математического стиля мышления, проявляющегося в определённых умственных навыках. В процессе математической деятельности в арсенал приёмов и человеческого мышления естественным образом включаются индукция и дедукция, обобщение и конкретизация, анализ и синтез, классификация и систематизация, абстрагирование и аналогия. Математические умозаключения и правила их построения вырабатывают у учащихся умения формулировать, обосновывать и доказывать суждения, тем самым развивают логическое мышление.

В процессе изучения математики необходимо уделять должное внимание развитию у школьников сообразительности, способности к догадке.

Математика – образец осуществления дедуктивных методов, поскольку подразумевается, что все математические предложения ( кроме принятых за исходные) доказываются, а конкретные применения этих предложении выводятся из доказательств, пригодных для общих случаев. Дедукция – переход от общего к частному.

В физике, химии, биологии широко используются апелляция к наблюдению и опыту, индуктивные рассуждения. Слово индукция в переводе на русский язык означает «наведение», а индуктивными называют выводы, сделанные на основе наблюдений и опытов. Роль индуктивных выводов в экспериментальных науках очень велика

Неполная индукция играет в математике очень большую, но чисто эвристическую роль; она позволяет догадываться о том, каким , по всей видимости должно быть решение.

Иногда общий результат удаётся угадать после рассмотрения не всех, а достаточно большого числа частных случаев – это так называемая неполная индукция. Неполная индукция помогает формировать математические догадки, ведущие затем к открытиям новых фактов.

Метод перебора конечного числа случаев, исчерпывающих все возможности, называется полной индукцией. Полная индукция имеет в математике ограниченное применение, так как многие интересные математические предложения охватывают бесконечное множество частных случаев, а провести проверку для бесконечного множества случаев человек не может. Неполная же индукция может привести к ошибочному результату. Утверждение может быть справедливым в целом ряде случаев и в то же время несправедливым вообще.

Во многих случаях выход из этого затруднения находится в обращении к особому методу рассуждений, называемому методом математической индукции.

Учащиеся часто пытаются использовать индукционные рассуждения в математике. Не понимая разницу между общим и частным суждениями, они используют неполную индукцию и приходят к ошибочным выводам. К этому их подталкивает опыт изучения математики в 5-6 классах, где многие математические факты не доказываются, а поясняются на примерах. Этот элективный курс поможет учащимся понять разницу между неполной индукцией, которая может дать неверный результат, и математической индукцией, которая является дедуктивным методом доказательства.

Одной из задач изучения школьного курса математики, является формирование представления о математике, как о науке, знакомство с её методами. Для арифметики натуральных чисел метод математической индукции является универсальным ( а часто и единственным) орудием доказательства.

^ Цель программы состоит в том, чтобы способствовать развитию математического мышления , логики и представлений о математике, как о науке.

Задачи программы:

  1. Познакомить учащихся с методом математической индукции. Показать возможности применения этого метода к решению математических задач.

  2. Показать разницу между индуктивными и дедуктивными рассуждениями.

  3. Способствовать развитию «математической интуиции» учащихся, как необходимого элемента формирования математических гипотез.

  4. Способствовать развитию логически правильной речи учащихся.

  5. Способствовать формированию навыка высказывания математических гипотез, их проверки и доказательства.

  6. Расширить математический кругозор учащихся.

  7. Способствовать формированию у учащихся представлений о математике, как о науке, её методах и построении.

Продолжительность программы 16 часов. Курс рассчитан на 16 учебных недель по

1 часу в неделю в течение одного учебного полугодия.

В процессе изучения элективного курса предполагается применение дифференцированного подхода, использование различных форм самостоятельной деятельности учащихся.

Итоговая аттестация по окончанию курса предусмотрена в виде защиты творческих проектов учащихся.


^ СОДЕРЖАНИЕ КУРСА

1. Суть метода математической индукции.

Частные и общие суждения. Проверка верности суждений. Индукция и дедукция. Роль

индукции в построении гипотезы. Неполная и полная индукция. Метод математической

индукции.

2. Доказательство тождеств.

Использование математической индукции для доказательства арифметических,

тригонометрических и алгебраических тождеств.

3. Задачи на доказательство неравенств.

Использование математической индукции для доказательства рациональных и

иррациональных неравенств.

4. Свойства числовых последовательностей.

Применение метода математической индукции для изучения свойств числовых

последовательностей.

5. Защита творческих проектов учащихся.


СПИСОК ЛИТЕРАТУРЫ

1. И.С. Соминский , Метод математической индукции, Москва, 1965 г

2. И. Н. Антипов, Н. Я. Виленкин, О. С. Ивашев-Мусатов, А. Г. Мордкович, Избранные

вопросы математики. Москва, 1979 г

3. Д. Пойа, Математика и правдоподобные рассуждения, Москва, 1977г

4. Л.И. Головина, И.М. Яглом , Индукция в геометрии, Москва, 1967г..

Скачать, 61.37kb.
Поиск по сайту:

Добавить текст на свой сайт
Загрузка...


База данных защищена авторским правом ©ДуГендокс 2000-2014
При копировании материала укажите ссылку
наши контакты
DoGendocs.ru
Рейтинг@Mail.ru