Загрузка...
Категории:

Загрузка...

Беспружинная пневмогидроарматура с уплотнительными затворами различной физической природы 01. 02. 06 Динамика, прочность машин, приборов и аппаратуры

Загрузка...
Поиск по сайту:


страница1/3
Дата09.04.2012
Размер1.02 Mb.
ТипАвтореферат диссертации
Содержание
Мулюкин Олег Петрович
Баранов Виктор Леопольдович
Общая характеристика работы
Цель работы
Задачи исследования
Объект исследования
Предмет исследования
Методы исследования
Научная новизна
На защиту выносятся
Достоверность результатов
Практическую значимость работы
Результаты исследований
Реализация результатов работы
Апробация работы.
Структура и объем работы
Основное содержание работы
В первой главе
Во второй главе
N – число циклов срабатываний (гарантированный ресурс), τ
...
Полное содержание
Подобный материал:
  1   2   3


На правах рукописи


Лаврусь Ольга Евгеньевна


Беспружинная пневмогидроарматура

с уплотнительными затворами

различной физической природы


01.02.06 – Динамика, прочность машин, приборов и аппаратуры


Автореферат диссертации на соискание ученой степени

доктора технических наук


Орёл – 2011

Работа выполнена в ГОУ ВПО «Самарский государственный университет путей сообщения» и ФГОУ ВПО «Государственный университет – учебно-научно-производственный комплекс»


Научный консультант:


Официальные оппоненты:


Ведущая организация:

доктор технических наук, профессор

^ Мулюкин Олег Петрович


доктор технических наук, профессор

Самсонов Владимир Николаевич


доктор технических наук, профессор,

^ Баранов Виктор Леопольдович


доктор технических наук, профессор,

Яцун Сергей Федорович


Государственный научно-производственный ракетно-космический центр «ЦСКБ-Прогресс», г. Самара



Защита состоится 28 июня 2011 г. в 14 00 часов в ауд. 212 на заседании диссертационного совета Д 212.182.03 при ФГОУ ВПО «Государственный университет – учебно-научно-производственный комплекс» по адресу: 302020, г. Орел, Наугорское шоссе, 29.


С диссертацией можно ознакомиться в научно-технической библиотеке ФГОУ ВПО «Государственный университет – учебно-научно-производственный комплекс».


Автореферат разослан «______» _______________ 2011 г.


Ученый секретарь

диссертационного совета М.И. Борзенков

^ Общая характеристика работы


Актуальность темы. Беспружинная автоматическая и управляемая пневмогидроарматура (ПГА) занимает должную нишу в клапанном агрегатостроении и широко применяется в различных отраслях отечественной промышленности, и прежде всего, в пневмогидросистемах управления и регулирования давления и расхода рабочих сред:

– наземных (стационарных) газогидротопливных комплексах заправки мобильной транспортной техники и индивидуальных потребителей сырьевых энергоресурсов;

– с переменными теплофизическими свойствами газожидкостных сред в стационарных установках и оборудовании по производству высокомолекулярных соединений (пропилен, фенолформальдегидные смолы, поликарбонат и пр.) в химической, нефтяной и газовых отраслях промышленности;

– установок теплоснабжения бытового потребителя, тепловых, гидравлических и атомных электростанций в качестве защитных и предохранительно-регулирующих устройств резервуаров с избыточным давлением рабочих сред, испытывающих существенные перепады внешних климатических и механических воздействий;

– сырьевого горнодобывающего и агропромышленного комплексов с регулируемыми параметрами рабочих сред, используемых в различных технологических процессах (гидравлическое дробление горных пород; компрессорное вентилирование газовзрывоопасных производственных участков; пневмогидроавтоматика механизмов предупреждения и устранения свoдообразований в бункерах хранения и выпуска сыпучих материалов и др.).

В последние годы при участии автора создан новый тип беспружинной ПГА, в которой вместо грузового задатчика нагрузки используется рычажный дифференциально-поршневой механизм. Это предопределило использование данного типа ПГА не только в стационарных объектах, но и в пневмогидросистемах мобильной транспортной техники, в робототехнических комплексах и технологическом оборудовании с незакоординированным положением центров масс подвижных звеньев ПГА относительно плоскости Земли.

Из оценки патентной службы СамГУПС, выполненной при участии автора, следует, что за последние десять лет резко (почти на 70 %) сократилось патентование конструкций беспружинных клапанных агрегатов автоматики и управления, включая рычажно-грузовую арматуру, хотя, как известно, до технического совершенства их конструкций, приемлемых экономичности и динамического качества еще далеко, тем не менее, данная арматура прочно занимает свою нишу в клапанном агрегатостроении, так как при всех очевидных достоинствах пружинной запорной ПГА ей присущ и ряд серьезных недостатков:

а) срабатывание металлической пружины на рабочем ходе уплотнительного затвора сопряжено с накоплением ею нежелательной энергии сжатия, противодействующей перекладке последнего при открытии арматуры;

б) жесткость металлических пружин существенно уменьшается или увеличивается, соответственно при росте или уменьшении температуры омывающей ее рабочей среды, что изменяет настроечные силовые характеристики пружины;

в) использование вместо пружины ее аналогов – металлических мембран или сильфонов – также сопряжено с рядом негативных последствий:

– ресурс работы таких металлических упругих элементов, как правило, на порядок-два ниже, чем у эластомерных деталей;

– крепление и центрирование металлических упругих элементов в корпусе сопряжено с усложнением конструкции устройства, увеличением его габаритов и массы, а также увеличением трудоемкости изготовления из-за потребности проведения комплекса мер по герметизации стыков оболочечного элемента с корпусом;

– значительные колебания (разброс) жесткостных характеристик мембран и сильфонов (даже одной партии изготовления) требует индивидуальной тарировки включающего такой элемент чувствительного органа с обеспечением необходимого резерва на его поджатие, что помимо увеличения допуска на величину его выходного параметра ухудшает массогабаритную характеристику конструкции.

Анализ причин, сдерживающих развитие работ по повышению технического уровня и динамического качества беспружинной ПГА с разнотипными уплотнительными затворами, показал:

1. Работы по созданию арматуры такого рода ведутся без ориентации на системный подход, учитывающий полярную взаимосвязь выходных характеристик ПГА (быстродействие, герметизирующая способность и ресурс) при изменении термодинамических параметров рабочей среды.

2. Отсутствуют обобщенные математические исследования динамики разнотипной беспружинных электопневмоклапанов (ЭПК) с уплотнительными затворами типа «металл-полимер», «металл по металлу» и др., предопределяющие допустимые области предельных значений рабочих характеристик при их компромиссном выборе в оцениваемых диапазонах варьирования конструктивных и эксплуатационных параметров системы «Резервуар сжатого газа – ЭПК – потребитель» при заданном диапазоне изменения давления в опорожняемом резервуаре сжатого газа.

3. Отсутствуют сводные классификационные схемы такой арматуры с детализированной классификацией входящих в ее состав узлов и элементов.

4. В последние годы функциональные возможности беспружинной запорной пневмогидроарматуры существенно расширились за счет применения при ее проектировании новых технических решений (пневмогидроарматура на рычажно-шарнирных механизмах с переставляемой осью вращения двуплечего рычага; уплотнительные затворы с изменяемым направлением гравитационной нагрузки; пневмогидроарматура с магнитными твердотельными и жидкостными уплотнительными затворами; технические решения на базе концепции энергетического затвора и др.). Однако к настоящему времени до автора не было издано ни одной монографии или наукоемкого пособия, содержащих обобщенные сведения по всем типам беспружинной запорной автоматической и управляемой ПГА и позволяющих проектировщику новой техники на этапе эскизного проектирования осуществить рациональный выбор конкретного типа беспружинного запорного пневмоагрегата c заданными выходными параметрами, а лишь затем обратиться к более фундаментальным научным трудам, жестко привязанным к выбранному типу запорной пневмогидроарматуры.

В связи с этим, тема работы, нацеленной на пополнение исследуемой ниши знаний в области теории и практики проектирования высокоэффективной беспружинной ПГА с уплотнительными затворами различной физической природы на базе компромиссного выбора их рациональных, полярно взаимосвязанных выходных параметров, является актуальной и важной с точки зрения обеспечения функциональной надежности и эксплуатационной безопасности пневмогидросистем и резервуаров с избыточным давлением рабочей среды.

Работа выполнена в рамках договора №1-06 о научно-техническом и педагогическом сотрудничестве СамГУПС и ОрелГТУ на 2006-2010 гг. на базе НИЛ «Динамическая прочность и виброзащита транспортных систем» ГОУ ВПО «Самарский государственный университет путей сообщения» в соответствии с координационным планом федеральной «Программы энергосбережения на железнодорожном транспорте в 1998-2000, 2005 годах» (Постановление Правительства РФ от 04.07.98 №262 пру), а также в рамках Международной Европейской программы «Темпус» по насыщению учебной программы «Мехатроника и робототехнические комплексы» (2005-2009 годы) фундаментальными и научно-прикладными отечественными разработками.

^ Цель работы – развитие научных основ и создание инструментальных средств проектирования беспружинной пневмогидроарматуры с уплотнительными затворами различной физической природы и разработка практических рекомендаций по ее использованию в различных отраслях отечественной промышленности.

^ Задачи исследования:

1. Проведение сравнительного анализа беспружинной запорной автоматической и управляемой клапанной пневмогидроарматуры с уплотнительными затворами различной физической природы по динамическому (быстродействие) и по конструктивно-технологическому (герметизирующая способность, срок службы) качеству с выявлением приоритетных направлений создания высокоэффективных видов ПГА такого рода.

2. Исследование полярной взаимосвязи выходных параметров (быстродействие, герметизирующая способность и ресурс) исполнительных звеньев беспружинной ПГА с уплотнительными затворами различной физической природы и разработка научно-обоснованных рекомендаций по компромиссному выбору пределов изменения данных взаимосвязанных параметров для выявления инструментальных средств целенаправленного влияния на динамическое качество и стабильность выходных параметров как на этапе проектирования будущей конструкции и разработки ее технологии, так и на этапе эксплуатации при выработке арматурой назначенного ресурса.

3. Разработка обобщенной математической модели базовой конструкции беспружинного ЭПК с дифференциально-поршневым задатчиком нагрузки, включающей частные математические модели производных от него ЭПК с грузовым и рычажно-грузовым механизмами нагружения, позволяющей осуществить компромиссный выбор рациональных конструкторско-технологических и динамических параметров исследуемых устройств под различные типы и уплотнительного материала затвора.

4. Разработка научно обоснованных рекомендаций по компромиссному выбору пределов изменения выходных параметров ЭПК на этапе его эскизного проектирования под конкретно принимаемые тип и уплотнительный материал затвора с учетом заданного изменения давления в опорожняемом резервуаре с сжатым газом.

5. Разработка на базе иерархического подхода классификационных схем по конструктивному исполнению беспружинной ПГА с уплотнительными затворами различной физической природы и создание на их основе новой высокоэффективной и конкурентоспособной арматуры такого рода для перспективных пневмогидросистем нового поколения, включая транспортную технику и наземные пневмогидротопливозаправочные комплексы мобильных транспортных средств.

^ Объект исследования – комплекс «беспружинная пневмогидроарматура с уплотнительными затворами различной физической природы – пневмогидросистема – рабочая среда», обладающий определенной совокупностью термодинамических свойств, которая определяет динамическое качество срабатывания пневмогидроарматуры при конкретно принятом типе уплотнительного затвора.

^ Предмет исследования – процессы формирования и коррекции в уплотнительных затворах беспружинной пневмогидроарматуры дополнительных компенсационных воздействий, которые определяют динамические свойства арматуры в составе пневмогидросистемы и позволяют уменьшить интенсивность неблагоприятного влияния изменения термодинамических свойств рабочей среды на выходные параметры ПГА.

^ Методы исследования. Теоретические исследования выполнены на основе классических методов расчета динамических систем с линейными и нелинейными упругодемпфирующими элементами. Использовались методы математического моделирования и численного решения уравнений на базе разработанных алгоритмов и банка известных экспериментальных данных по материалам уплотнительных затворов ПГА исследуемого класса

^ Научная новизна:

1. Разработана обобщенная математическая модель базовой конструкции беспружинного ЭПК с дифференциально-поршневым задатчиком нагрузки и его частных конструктивных решений на базе грузовых и рычажно-грузовых механизмов для пневмогидросистем с опорожняемыми резервуарами с сжатым газом, учитывающая полярную взаимосвязь выходных параметров ЭПК (быстродействие, герметизирующая способность и ресурс) при различных типах и уплотнительных материалах затвора и позволяющая уже на этапе эскизного проектирования оценить пределы изменения выходных параметров в процессе эксплуатации.

2. Выявлены новые закономерности динамических процессов в исследуемом семействе ЭПК и оценены пределы изменения временных параметров срабатывания исследуемого семейства беспружинных ЭПК в пневмогидросистемах с резервуарами периодической выдачи сжатого газа в раздаточную магистраль с учетом взаимосвязи выходных параметров ПГА при:

– варьировании термодинамических параметров в опорожняемых резервуарах с сжатым газом;

– целенаправленном изменении конструктивных параметров разнотипных беспружинных задатчиков нагрузки для стабилизации в эксплуатации выходных характеристик динамической системы «резервуар сжатого газа – ЭПК – потребитель».

Математическая модель и новые закономерности динамических процессов позволяют развить научные основы и создать инструментальные средства проектирования беспружинной ПГА с уплотнительными затворами различной физической природы по повышению показателей динамического (быстродействие) и конструктивно-технологического (герметизирующая способность, ресурс уплотнительного затвора) качества для разработки ПГА такого рода с высокими требованиями к выходным параметрам.

3. Разработаны научно обоснованные рекомендации по компромиссному выбору пределов изменения выходных параметров ЭПК на этапе его эскизного проектирования под конкретно принимаемые тип и уплотнительный материал затвора с учетом пределов изменения давления в опорожняемом резервуаре с сжатым газом, что позволяет прогнозировать пределы изменения выходных параметров ЭПК в процессе выработки эксплуатационного ресурса.

4. Разработана сводная классификация беспружинной ПГА с уплотнительными затворами различной физической природы, построенная на базе иерархического подхода и включающая детализированные классификационные разветвления по конструктивному исполнению их составных звеньев, позволяющая сконцентрировать информацию и целенаправленно использовать ее при создании патентозащищенных конструкций ПГА с высокими выходными данными.

^ На защиту выносятся:

1. Результаты анализа текущего состояния и выявленные на его основе тенденции создания высокоэффективных конструкций беспружинной ПГА с уплотнительными затворами различной физической природы в виде мембранных устройств, грузовых и рычажно-грузовых клапанных механизмов, упругодеформируемых эластомерных клапанов, уплотнительных соединений на базе упругопористых нетканых металлических материалов и магнитных твердотельных и жидкостных уплотнений.

2. Результаты исследования взаимосвязи функциональных свойств (быстродействие, герметизирующая способность и срок службы) беспружинных электропневмоклапанов с грузовым, рычажно-грузовым и дифференциально-поршневым задатчиками нагрузки при варьировании термодинамических параметров рабочей среды в опорожняемых резервуарах сжатого газа и компромиссном выборе конструктивных параметров динамической системы «резервуар сжатого газа – ЭПК – потребитель».

3. Обобщенная математическая модель семейства беспружинных ЭПК, позволяющая на этапе эскизного проектирования осуществить компромиссный выбор рациональных конструктивных и термодинамических параметров системы «резервуар сжатого газа – ЭПК – потребитель» с учетом их влияния на выходные характеристики ЭПК при изменении условий эксплуатации с учетом физико-механических свойств принятых типа и уплотнительного материала затвора.

4. Научно обоснованные рекомендации по компромиссному выбору пределов изменения взаимосвязанных выходных параметров ЭПК при принятии на этапе эскизного проектирования конкретного типа и уплотнительного материала затвора в заданном диапазоне изменения давления в опорожняемом резервуаре с сжатым газом.

5. Разработанная сводная классификационная схема беспружинной ПГА с уплотнительными затворами различной физической природы, построенная на базе иерархического подхода, позволяющая проведение целенаправленного создания перспективных, высокоэффективных и патентозащищенных конструкций с высокими требованиями к их выходным параметрам

6. Новые технические решения и конструкции беспружинной ПГА с уплотнительными затворами различной физической природы, позволяющие целенаправленно регулировать пределы допускаемого варьирования изменения выходных параметров ПГА в соответствие с изменением давления в резервуаре с сжатым газом.

^ Достоверность результатов обеспечивается корректностью постановки задач исследования, обоснованностью используемых теоретических построений, допущений и ограничений, применением апробированных аналитических и численных методов анализа, современной вычислительной техники и программного обеспечения, а также подтверждается сходимостью полученных результатов с результатами других авторов.

^ Практическую значимость работы представляют результаты систематизации беспружинной ПГА с уплотнительными затворами различной физической природы и их конструктивные решения; методы расчета рациональных параметров арматуры подобного рода и их составных звеньев, включая силовые и уплотнительные сопряжения с учетом принятого уплотнительного материала затвора.

^ Результаты исследований могут быть использованы на этапе эскизного проектирования и при проведении научно-исследовательских и опытно-конструкторских работ по повышению функциональной надежности различных типов беспружинной ПГА модернизируемых и разрабатываемых объектов техники с минимизацией финансовых затрат, сроков их проектирования и доводки выходных параметров агрегатов.

^ Реализация результатов работы:

1. Результаты работы приняты к использованию в учебном процессе СамГУПС и специализированном железнодорожном предприятии ОАО «Самараэкотранс».

2. Основополагающие материалы диссертации легли в основу изданных при участии автора пяти монографий для специалистов клапанного агрегатостроения, связанных с проектированием и доводкой выходных параметров беспружинной ПГА.

^ Апробация работы. Основные результаты диссертационной работы докладывались на: Международной научно-технической конференции «Актуальные проблемы динамики и прочности материалов и конструкций: модели, методы, решения», г. Самара, ОрелГТУ – СамГУПС, 2007 г.; IV Международной научно-практической конференции «Актуальные проблемы развития транспортного комплекса», г. Самара, СамГУПС, 2008 г.; Международной научно-технической конференции «Гидравлические машины, гидроприводы и гидропневмоавтоматика: Современное состояние и перспективы развития», г. С.-Петербург, СППИ, 2008 г., Всероссийской научно-практической конференции, посвященной памяти проф. Л.И. Кошкина, г. Самара, СГПУ, 2008 г.; 12-ой Международной научно-технической конференции «Гервикон-2008», г. Перемышль (Польша), 2008 г.; IV Международной научно-технической конференции «Проблемы исследования и проектирования машин», г. Пенза: ПДЗ, 2008 г.; Международной научно-технической конференции «Современные проблемы математики, механики, информатики», г. Тула, ТулГУ, 2008 г.; V Всероссийской научно-практической конференции «Актуальные проблемы развития транспортного комплекса» г. Самара, СамГУПС, 2009 г.; рассмотрены и одобрены кафедрой «Основы конструирования машин», СГАУ, 2010 г.

Публикации. По теме диссертации опубликовано 64 научные работы общим объемом 40,5 п.л., из них пять монографий (четыре в соавторстве), 46 статей в научных изданиях, 4 патента Российской Федерации на изобретения и полезные модели, тезисы 14 докладов.

^ Структура и объем работы. Диссертация состоит из введения, пяти глав, основных результатов и выводов, списка используемой литературы из 157 наименований. Основной текст изложен на 280 страницах и содержит 128 рисунков и 13 таблиц.

  1   2   3

Скачать, 289.08kb.
Поиск по сайту:

Добавить текст на свой сайт
Загрузка...


База данных защищена авторским правом ©ДуГендокс 2000-2014
При копировании материала укажите ссылку
наши контакты
DoGendocs.ru
Рейтинг@Mail.ru