Загрузка...
Категории:

Загрузка...

История развития геометрии как науки

Загрузка...
Поиск по сайту:


Скачать 234.08 Kb.
Дата08.03.2012
Размер234.08 Kb.
ТипРеферат
Содержание
Первый - период
Геометрия Египта
Геометрия Вавилона
Геометрия древней Греции
Второй период
Труды Евклида
Труды Архимеда
Труды Менелая
Труды Аполлона Пергского
Третий период
Труды Эйлера
Четвёртый период
Задачи древности
Подобный материал:

Муниципальное общеобразовательное учреждение

средняя общеобразовательная школа № 6

округа Муром


Реферат

По геометрии

На тему: история развития геометрии как науки


Подготовила:

Ученица 8 «В» класса

Барскова Екатерина

Проверила:

Учитель математики

Шубина И.Н.


Г. Муром 2011 год

Содержание

  1. Введение ……………………………………………………………………………. 4

  2. Первый период…………………………………………………………………… 7

    1. Геометрия Египта………………………………………………………….. 7

    2. Геометрия Вавилона……………………………………………………… 8

    3. Геометрия древней Греции…………………………………………… 9

  3. Второй период……………………………………………………………………. 11

    1. Труды Евклида………………………………………………………………. 11

    2. Труды Архимеда……………………………………………………………. 12

    3. Труды Менелая……………………………………………………………… 13

    4. Труды Апполона……………………………………………………………. 13

  4. Третий период……………………………………………………………………. 15

    1. Труды Эйлера……………………………………………………………….. 15

  5. Четвёртый период.................................................................. 17

  6. Задачи…………………………………………………………………………………. _

    1. Задачи древности…………………………………………………………. 18

    2. Современные задачи……………………………………………………. 19

  7. Заключение………………………………………………………………………… 20

  8. Литература…………………………………………………………………………. 21



Цель работы: узнать, как развивалась наука геометрия, и сравнить решение задач в древние времена и как они решаются сейчас.

Задачи:

  1. Изучить литературу об истории науки геометрии.

  2. Изучить каждый этап развития.

  3. Рассмотреть решение задач в древности.

  4. Рассмотреть способы решения современных задач.

  5. Сравнить решение задач древности и современности.

Актуальность темы: Геометрия, как и всякая наука, возникла под влиянием жизненных потребностей. Необходимость повседневного удовлетворения их ставит человека перед целым рядом вопросов о форме окружающих его предметов, вычислениях, связанных с землемерием, строительным делом и т.д. Слово "геометрия" означает "землемерие" и ясно указывает на источник его происхождения.


Введение


Геометрия возникла очень давно, это одна из самых древних наук. Геометрия (греческое, от ge — земля и metrein — измерять)— наука о пространстве, точнее — наука о формах, размерах и границах тех частей пространства, которые в нем занимают вещественные тела. Таково классическое определение геометрии, или, вернее, таково действительное значение классической геометрии. Однако современная геометрия во многих своих дисциплинах выходит далеко за пределы этого определения. Развитие геометрии принесло с собой глубоко идущую эволюцию понятия о пространстве. В том значении, в котором пространство как математический термин широко употребляется современными геометрами, оно уже не может служить первичным понятием, на котором покоится определение геометрии, а, напротив, само находит себе определение в ходе развития геометрических идей.

Важную роль играли и эстетические потребности людей: желание украсить свои жилища и одежду, рисовать картины окружающей жизни. Все это способствовало формированию и накоплению геометрических сведений. За несколько столетий до нашей эры в Вавилоне, Китае, Египте и Греции уже существовали начальные геометрические знания, которые добывались в основном опытным путем, но они не были еще систематизированы и передавались от поколения к поколению в виде правил и рецептов, например, правил нахождения площадей фигур, объемов тел, построение прямых углов и т.д. Не было еще доказательств этих правил, и их изложение не представляло собой научной теории.

Геометрия дает общее понятие о геометрической фигуре, под которой понимают не только тело, поверхность, линию или точку, но и любую их совокупность. Геометрия в первоначальном значении есть наука о фигурах, взаимном расположении и размерах их частей, а также о преобразованиях фигур. Это определение вполне согласуется с определением геометрии как науки о пространственных формах и отношениях. Действительно, фигура, как она рассматривается в геометрия, и есть пространственная форма; поэтому в геометрии говорят, например, "шар", а не "тело шарообразной формы"; расположение и размеры определяются пространственными отношениями; наконец, преобразование, как его понимают в геометрии, так же есть некоторое отношение между двумя фигурами - данной и той, в которую она преобразуется.

Измерение площадей – одна из самых первых математических задач, возникших в глубокой древности. Среди самых старых древневавилонских клинописных табличек, смысл которых удалось расшифровать, – а их возраст составляет более четырех тысяч лет, – нашлись таблички с расчетами количества зерна, которое требуется для посева в зависимости от площади поля (при заданных расстояниях между рядами и зернами в ряду). Такие расчеты тогда не казались простыми из-за громоздкого способа обозначений больших чисел, в котором особую роль играли числа 6, 10, 60 (от этой «шестидесятеричной» системы до наших дней сохранился обычай делить окружность на 360 частей и измерять углы в градусах).
Крупнейший древнегреческий историк Геродот (V век до нашей эры) оставил описание того, как египтяне после каждого разлива Нила заново размечали плодородные участки его берегов, с которых ушла вода. По Геродоту, с этого и началась геометрия.

В современном, более общем смысле, геометрия объемлет разнообразные математические теории, принадлежность которых к геометрия определяется не только сходством (хотя порой и весьма отдалённым) их предмета с обычными пространственными формами и отношениями, но также тем, что они исторически сложились и складываются на основе геометрии в первоначальном её значении и в своих построениях исходят из анализа, обобщения и видоизменения её понятий. Геометрия в этом общем смысле тесно переплетается с другими разделами математики и её границы не являются точными.

В развитии геометрии можно указать четыре основных периода, переходы между которыми обозначали качественное изменение геометрии.


^ Первый - период зарождения геометрия как математической науки - протекал в Древнем Египте, Вавилоне и Греции примерно до 5 в. до н. э. Первичные геометрические сведения появляются на самых ранних ступенях развития общества. Зачатками науки следует считать установление первых общих закономерностей, в данном случае - зависимостей между геометрическими величинами. Этот момент не может быть датирован. Самое раннее сочинение, содержащее зачатки геометрии, дошло до нас из Древнего Египта и относится примерно к 17 в. до н. э., но и оно, несомненно, не первое.

Геометрия, по свидетельству греческих историков, была перенесена в Грецию из Египта в 7 в. до н. э. Здесь на протяжении нескольких поколений она складывалась в стройную систему. Процесс этот происходил путём накопления новых геометрических знаний, выяснения связей между разными геометрическими фактами, выработки приёмов доказательств и, наконец, формирования понятий о фигуре, о геометрическом предложении и о доказательстве. Этот процесс привёл, наконец, к качественному скачку. Геометрия превратилась в самостоятельную математическую науку: появились систематические её изложения, где её предложения последовательно доказывались.

^ Геометрия Египта

Имеются вполне достоверные сведения о значительном развитии геометрических знаний в Египте более чем за две тысячи лет до нашей эры. Узкая плодородная полоса земли между пустыней и рекой Нилом ежегодно подвергалась затоплению, и каждый раз разлив смывал границы участков, принадлежавших отдельным лицам. После спада воды требовалось с возможно большей точностью восстановить эти границы, ибо каждый из участков ценился весьма высоко. Это заставило египтян заниматься вопросами измерения, то есть землемерием. Помимо этого, они вели развитую торговлю и поэтому нуждались в умении измерять емкость сосудов. Искусство кораблевождения привело их к астрономическим сведениям. Выдающиеся постройки египтян - пирамиды, которые сохранились до нашего времени, свидетельствуют, что их сооружение требовало знания пространственных форм. Все это указывает на чисто опытное происхождение геометрии.

^ Геометрия Вавилона

К задачам, которые вавилоняне решали алгебраическим и арифметическим методом, относятся и многие задания на определение длин, площадей при делении земельных участков, объемов земляных выемок, хозяйственных построек. Все решения, встречающиеся в клинописных текстах, ограничиваются простым перечислением этапов вычисления в виде догматических правил: "делай то - то, делай так - то". В дошедших до нас вавилонских табличках имеются задачи абстрактного характера и внешне кажущиеся не связанными с практическими нуждами. Но это не так: они возникли в результате теоретической обработки условий, первоначально порожденных потребностями практики при межевании земель, возведении стен и насыпей, при строительстве каналов, плотин, оборонительных сооружений и пр. Сохранилось немало планов земельных угодий, разделенных на участки прямоугольной, трапецеидальной или треугольной форм. Но соответствующие геометрические фигуры воспринимались ими как абстрактные, так прямоугольник они называли "то, что имеет длину и ширину", трапецию - "лбом быка", сегмент - "полем полумесяца", параллельные прямые - "двойными прямыми". У вавилонян не было таких геометрических понятий как точка, прямая, линия, поверхность, плоскость, параллельность. Измерение производилось при помощи веревки. Геометрические познания вавилонян превышали египетские.

^ Геометрия древней Греции

Греческие купцы познакомились с восточной математикой, прокладывая торговые пути. Но люди Востока почти не занимались теорией, и греки быстро это обнаружили. Они задавались вопросами: почему в равнобедренном треугольнике два угла при основании равны; почему площадь треугольника равна половине площади прямоугольника при одинаковых основаниях и высотах?

К сожалению, не сохранилось первоисточников, описывающих ранний период развития греческой математики. Только благодаря восстановленным текстам четвертого столетия до нашей эры и трудам арабских ученых, которые были богаты переводами сочинений авторов античной Греции, мы располагаем изданиями Евклида, Архимеда, Аполлония и других великий людей. Но в этих произведениях уже представлена вполне развитая математическая наука.

Математика древней Греции прошла длительный и сложный путь развития, начиная с VI столетия до н.э. и по VI век. Историки науки выделяют три периода ее развития в соответствии с характером знаний:

1 - Накопление отдельных математических фактов и проблем (6 - 5B.B. до н.э.).

2 - Систематизация полученных знаний (4 - 3 в.в. до н.э.).

3 - Период вычислительной математики (3в. до н.э. - 6 в.).

Необыкновенный расцвет науки и культуры был тесно связан с общим подъемом греческого производства 6 - 4 в.в. до н.э., жизненными потребностями людей. Проблемы механики, астрономии, строительства, архитектуры, мореплавания требовали совершенствования математических методов, начиная от вычислительной геометрии и до учения об отношениях, способах определения площадей, объемов, центров тяжести.


^ Второй период развития геометрии. Известны упоминания систематические изложения геометрии, среди которых данное в 5 в. до н. э. Гиппократом Хиосским. Сохранились же и сыграли в дальнейшем решающую роль появившиеся около 300 до н. э. "Начала" Евклида. Ещё в Греции к ней добавляются новые результаты, возникают новые методы определения площадей и объёмов (Архимед, 3 в. до н. э.), учение о конических сечениях (Аполлоний Пергский, 3 в. до н. э.), присоединяются начатки тригонометрии (Гиппарх, 2 в. до н. э.) и геометрия на сфере (Менелай, 1 в. н. э.). Упадок античного общества привёл к сравнительному застою в развитии геометрии, однако она продолжала развиваться в Индии, в Средней Азии, в странах арабского Востока.

Возрождение наук и искусств в Европе повлекло дальнейший расцвет геометрии. Принципиально новый шаг был сделан в 1-й половине 17 в. Р. Декартом, который ввёл в геометрию метод координат. Метод координат позволил связать геометрия с развивавшейся тогда алгеброй и зарождающимся анализом. Применение методов этих наук в геометрию породило аналитическую геометрию, а потом и дифференциальную. Геометрия перешла на качественно новую ступень по сравнению с геометрией древних: в ней рассматриваются уже гораздо более общие фигуры и используются существенно новые методы.

^ Труды Евклида

Для геометрии эпохи эллинизма характерен интерес к построению логически завершенных теорий . Наиболее ярко эта тенденция отразилась в творчестве Евклида Александрийского (III в. до н.э.).

В III в. до н.э. древнегреческий ученый Евклид написал книгу под названием "Начала". В ней он подытожил накопленные к тому времени геометрические знания и попытался дать законченное аксиоматическое изложение этой науки. Написана она была настолько хорошо, что в течение 2000 лет преподавание геометрии велось либо по переводам, либо по незначительным переработкам книги Евклида. Но профессиональные математики обращались также и к трудам других великих греческих ученых: Архимеда, Аполлония. Классическую геометрию стали называть евклидовой в отличие от неевклидовых, появившихся в XIX веке.

Евклиду приписывается несколько теорем и новых доказательств, но их значимость не может быть сравнима с достижениями великих греческих геометров: Фалеса и Пифагора (VI в. до н.э.), Евдокса и Теэтета (IV в. до н.э.). Величайшая заслуга Евклида состоит в том, что он подвел итог построению геометрии и придал ей завершенную форму.

Он с величайшим искусством расположил материал по 13 книгам так, чтобы трудности не возникали преждевременно. Позже греческие математики включили в сочинение еще XIV и XV книги. Главная особенность "Начал" состоит в том, что они построены по единой логической схеме, и все содержащиеся в них теории строго обоснованы по принципу построения научных дисциплин, который намечался еще у Аристотеля.

^ Труды Архимеда

Архимеду принадлежит формула для определения площади треугольника через три его стороны (неправильно именуемая формулой Герона). Архимед дал (не вполне исчерпывающую) теорию полуправильных выпуклых многогранников (архимедовы тела). Особое значение имеет «аксиома Архимеда»: из неравных отрезков меньший, будучи повторен достаточное число раз, превзойдет больший. Эта аксиома определяет т. н. архимедовскую упорядоченность, которая играет важную роль в современной математике. Архимед построил счисление, позволяющее записывать и называть весьма большие числа. Он с большой точностью вычислил значение числа и указал пределы погрешности.

^ Труды Менелая

Менелаем были написаны два сочинения: "О вычислении хорд", в 6 книгах, и "Сферика", в 3 книгах. Из них первое совсем не дошло до нас. Утрачен также и греческий оригинал второго, содержание которого известно современной науке по его латинским переводам, составленным по взаимно подтверждающим друг друга арабским и еврейским переводам того же сочинения. Главным предметом "Сферики" Менелая. служит сферическая тригонометрия. Из числа многих предложений, для нас впервые встречающихся в этом сочинении, самым замечательным считается обыкновенно теорема Менелая., которая прежде называлась правилом шести количеств (regula sex quantitatum). Содержание ее состоит в следующем. Если все стороны треугольника пересечь прямой, то произведение их трех отрезков, из числа не имеющих общих концов, равно произведению таких же трех остальных отрезков.

^ Труды Аполлона Пергского

АПОЛЛОНИЙ ПЕРГСКИЙ (ок. 260 — 170 до н. э.), древнегреческий математика и астроном, ученик Евклида. В основном труде «Конические сечения» (8 книг) дал полное изложение их теории. Для объяснения видимого движения планет построил теорию эпициклов. Идеи Аполлона Пергского оказали большое влияние на развитие естествознания нового времени. Гипербола является коническим сечением. Она может быть

получена, если секущая плоскость пересекает обе полости конической поверхности, не проходя через вершину.


^ Третий период развития геометрии. Аналитическая геометрия изучает фигуры и преобразования, задаваемые алгебраическими уравнениями в прямоугольных координатах, используя при этом методы алгебры. Дифференциальная геометрия, возникшая в 18 в. в результате работ Л. Эйлера, геометрия Монжа и др., исследует уже любые достаточно гладкие кривые линии и поверхности, их семейства (т. е. их непрерывные совокупности) и преобразования. Её название связано в основном с её методом, исходящим из дифференциального исчисления. К 1-й половине 17 в. относится зарождение проективной геометрии в работах Ж. Дезарга и Б. Паскаля. Она возникла из задач изображения тел на плоскости; её первый предмет составляют те свойства плоских фигур, которые сохраняются при проектировании с одной плоскости на другую из любой точки. Окончательное оформление и систематическое изложение этих новых направлений геометрии были даны в 18 - начале 19 вв. Эйлером для аналитической геометрии (1748), Монжем для дифференциальной геометрия (1795), Ж. Понселе для проективной геометрии (1822), причём само учение о геометрическом изображении (в прямой связи с задачами черчения) было ещё раньше (1799) развито и приведено в систему Монжем в виде начертательной геометрии. Во всех этих новых дисциплинах основы (аксиомы, исходные понятия) геометрии оставались неизменными, круг же изучаемых фигур и их свойств, а также применяемых методов расширялся.

^ Труды Эйлера


В элементарной геометрии Эйлер обнаружил несколько фактов, не замеченных Евклидом:

Три высоты треугольника пересекаются в одной точке (ортоцентре).

В треугольнике ортоцентр, центр описанной окружности и центр тяжести лежат на одной прямой — «прямой Эйлера».

Основания трёх высот произвольного треугольника, середины трёх его сторон и середины трёх отрезков, соединяющих его вершины с ортоцентром, лежат все на одной окружности (окружности Эйлера).

Число вершин (В), граней (Г) и рёбер (Р) у любого выпуклого многогранника связаны простой формулой: В + Г = Р + 2.

Второй том «Введения в анализ бесконечно малых» (1748) — это первый в мире учебник по аналитической геометрии и основам дифференциальной геометрии. Термин аффинные преобразования впервые введён в этой книге вместе с теорией таких преобразований.

В 1760 году вышли фундаментальные «Исследования о кривизне поверхностей». Эйлер обнаружил, что в каждой точке гладкой поверхности имеются два нормальных сечения с минимальным и максимальным радиусами кривизны, и плоскости их взаимно перпендикулярны. Вывел формулу связи кривизны сечения поверхности с главными кривизнами.

1771 год: опубликовано сочинение «О телах, поверхность которых можно развернуть на плоскость». В этой работе введено понятие развёртывающейся поверхности, то есть поверхности, которая может быть наложена на плоскость без складок и разрывов. Эйлер, однако, даёт здесь вполне общую теорию метрики, от которой зависит вся внутренняя геометрия поверхности. Позже исследование метрики становится у него основным инструментом теории поверхностей.


^ Четвёртый период в развитии геометрия открывается построением Н. И. Лобачевским в 1826 новой, неевклидовой геометрия , называемой теперь Лобачевского геометрией. Независимо от Лобачевского в 1832 ту же геометрию построил Я. Больяй (те же идеи развивал К. Гаусс, но он не опубликовал их). Лобачевский рассматривал свою геометрию как возможную теорию пространственных отношений; однако она оставалась гипотетической, пока не был выяснен (в 1868) её реальный смысл и тем самым было дано её полное обоснование. Переворот в геометрии, произведённый Лобачевским, по своему значению не уступает ни одному из переворотов в естествознании, и недаром Лобачевский был назван "Коперником геометрии". В его идеях были намечены три принципа, определившие новое развитие геометрии. Первый принцип заключается в том, что логически мыслима не одна евклидова геометрия , но и другие "геометрии". Второй принцип - это принцип самого построения новых геометрических теорий путём видоизменения и обобщения основных положений евклидовой геометрии. Третий принцип состоит в том, что истинность геометрической теории, в смысле соответствия реальным свойствам пространства, может быть проверена лишь физическим исследованием и не исключено, что такие исследования установят, в этом смысле, неточность евклидовой геометрии. Современная физика подтвердила это. Однако от этого не теряется математическая точность евклидовой геометрии, т.к. она определяется логической состоятельностью (непротиворечивостью) этой геометрии. Точно так же в отношении любой геометрической теории нужно различать их физическую и математическую истинность; первая состоит в проверяемом опытом соответствии действительности, вторая - в логической непротиворечивости. Лобачевский дал, т. о., материалистическую установку философии математики


^ Задачи древности

  1. Задача ал-Караджи.

«Найти площадь прямоугольника, основание которого

вдвое больше высоты, а площадь численно равна периметру».

  1. Из 1-й книги «Начал» Евклида.

«Данный прямолинейный угол рассечь пополам».

  1. Из 1-й книги «Начал» Евклида.

«Данную ограниченную прямую (т. е. отрезок) рассечь

пополам».


Современные задачи




1.


2.


Задача №1

  1. Начертим полуокружность произвольного радиуса из угла А.

  2. Из точки В и D тоже проведём полуокружность того же радиуса и отметим точку пересечения С полуокружностей.

  3. Проведём луч из угла А, проходящий через точку С. АС- биссектриса.

Доказательство:

Соединим точки ВС и СD => ВС=СD и АВ=АD.

Рассмотрим треугольник АВС и треугольник САD. АВ=AD; ВС=СD; CD-общая => АВС= AСD по 3-ему признаку. Значит угол САD равен углу САВ => СА-биссектриса, что и требовалось доказать.


Задача №2

Проведём из точки А окружность произвольного радиуса. И того же радиуса окружность из точки В. Отметим точки пересечения С и D.

CH-делит АВ пополам.

Доказательство:

Рассмотрим АВС. АС=ВС (т.к. одинаковый радиус окружности) => АВС- равнобедренный. В этом треугольнике CH будет являться высотой, биссектрисой и медианой => AH=HB.


Заключение

Наука геометрия очень важна для человека. Геометрия развивалась за несколько столетий до нашей эры в Вавилоне, Китае, Египте и Греции. Большой вклад в развитие геометрии внесли известные учёные: Евклид и его книга под названием «Начала», Архимед, которому принадлежит формула для определения площади треугольника через три его стороны, Менелай, которым были написаны два сочинения «О вычислении хорд» в 6 книгах и «Сферика» в 3 книгах. Наука геометрия и сейчас развивается. Мы легко решаем задачи, для которых в древности потребовалось бы много времени и сил.


Литература

  1. http//www.academic.ru

  2. http//www.istorya.ru

  3. http//www.referatfrom.ru

  4. http//www.wikipedia.ru

  5. История математики в школе. Автор - Г.И. Глейзер. 1982г.




Скачать, 123.9kb.
Поиск по сайту:

Добавить текст на свой сайт
Загрузка...


База данных защищена авторским правом ©ДуГендокс 2000-2014
При копировании материала укажите ссылку
наши контакты
DoGendocs.ru
Рейтинг@Mail.ru