Загрузка...
Категории:

Загрузка...

«Философские аспекты математического моделирования»

Загрузка...
Поиск по сайту:


Скачать 355.83 Kb.
страница3/7
Дата12.03.2012
Размер355.83 Kb.
ТипРеферат
Методология научных исследований
Вычислительный эксперимент
К основным преимуществам вычислительного эксперимента можно отнести следующие
Возникновение математической модели
Подобный материал:
1   2   3   4   5   6   7
^

Методология научных исследований


Как методология научных исследований математическое моделирование сочетает в себе опыт различных отраслей науки о природе и обществе, прикладной математики, информатики и системного программирования для решения фундаментальных проблем. Математическое моделирование объектов сложной природы – единый сквозной цикл разработок от фундаментального исследования проблемы до конкретных численных расчетов показателей эффективности объекта. Результатом разработок бывает система математических моделей, которые описывают качественно разнородные закономерности функционирования объекта и его эволюцию в целом как сложной системы в различных условиях. Вычислительные эксперименты с математическими моделями дают исходные данные для оценки показателей эффективности объекта. Поэтому математическое моделирование как методология организации научной экспертизы крупных проблем незаменимо при проработке народнохозяйственных решений. (В первую очередь это относится к моделированию экономических систем4).

По своей сути математическое моделирование есть метод решения новых сложных проблем, поэтому исследования по математическому моделированию должны быть опережающими. Следует заранее разрабатывать новые методы, готовить кадры, умеющие со знанием дела применять эти методы для решения новых практических задач.
^

Вычислительный эксперимент


Академик А. А. Самарский, один из основоположников вычислительной математики и математического моделирования в нашей стране, создатель ведущей школы в области математического моделирования, понимал под вычислительным экспериментом такую организацию исследований, при которой на основе математических моделей изучаются свойства объектов и явлений, проигрывается их поведение в различных условиях и на основе этого выбирается оптимальный режим5. Другими словами, вычислительный эксперимент предполагает переход от изучения реального объекта к изучению его математической модели. Такой моделью, как правило, является одно или несколько уравнений. Более строго математические модели будут определены ниже.

Впервые вычислительный эксперимент начал использоваться для изучения таких процессов, экспериментальное исследование которых невозможно или затруднено. Например, в 40-50 годы XX столетия академик М.В. Келдыш разрабатывает математическое описание космических полетов.
^
К основным преимуществам вычислительного эксперимента можно отнести следующие:
  • Возможность исследования объекта без модификации установки или аппарата.

  • Возможность исследования каждого фактора в отдельности, в то время как в реальности они действуют одновременно.

  • Возможность исследования нереализуемых на практике процессов.

Вычислительный эксперимент включает в себя следующие этапы (см. рисунок 1):

  1. Физическое описание процесса, то есть уяснение закономерности протекаемых явлений.

  2. Разработка математической модели.

  3. Алгоритм или метод решения уравнений.

  4. Разработка программ.

  5. Проведение расчетов, анализ результатов и оптимизация.



Тем самым основу вычислительного эксперимента составляет триада: модель – алгоритм - программа. Опыт решения крупных задач показывает, что метод математического моделирования и вычислительный эксперимент соединяют в себе преимущества традиционных теоретических и экспериментальных методов исследования.
^

Возникновение математической модели


Математическая модель может возникнуть тремя путями:

  1. В результате прямого изучения реального процесса. Такие модели называются феноменологическими.

  2. В результате процесса дедукции. Новая модель является частным случаем некоторой общей модели. Такие модели называются асимптотическими.

  3. В результате процесса индукции. Новая модель является обобщением элементарных моделей. Такие модели называют моделями ансамблей.

Процесс моделирования начинается с моделирования упрощенного процесса, который с одной стороны отражает основные качественные явления, с другой стороны допускает достаточно простое математическое описание. По мере углубления исследования строятся новые модели, более детально описывающие явление. Факторы, которые считаются второстепенными на данном этапе, отбрасываются. Однако, на следующих этапах исследования, по мере усложнения модели, они могут быть включены в рассмотрение. В зависимости от цели исследования один и тот же фактор может считаться основным или второстепенным.

Математическая модель и реальный процесс не тождественны между собой. Как правило, математическая модель строится с некоторым упрощением и при некоторой идеализации. Она лишь приближенно отражает реальный объект исследования, и результаты исследования реального объекта математическими методами носят приближенный характер. Точность исследования зависит от степени адекватности модели и объекта и от точности применяемых методов вычислительной математики.

Схема построения математических моделей следующая:

  1. Выделение параметра или функции, подлежащей исследованию.

  2. Выбор закона, которому подчиняется эта величина.

  3. Выбор области, в которой требуется изучить данное явление.
1   2   3   4   5   6   7

Поиск по сайту:

Загрузка...


База данных защищена авторским правом ©ДуГендокс 2000-2014
При копировании материала укажите ссылку
наши контакты
DoGendocs.ru
Рейтинг@Mail.ru