Загрузка...
Категории:

Загрузка...

«Философские аспекты математического моделирования»

Загрузка...
Поиск по сайту:


Скачать 355.83 Kb.
страница4/7
Дата12.03.2012
Размер355.83 Kb.
ТипРеферат
Классификация математических моделей
Модели прогноза или расчетные модели без управления
Оптимизационные модели.
Линейное программирование
Целочисленное программирование
Кибернетические модели.
Философия кибернетики
Подобный материал:
1   2   3   4   5   6   7
^

Классификация математических моделей


Существуют всевозможные классификации математических моделей. Выделяют линейные и нелинейные модели, стационарные и динамические, модели, описываемые алгебраическими, интегральными и дифференциальными уравнениями, уравнениями в частных производных. Можно выделять классы детерминируемых моделей, вся информация в которых является полностью определяемой, и стохастических моделей, то есть зависящих от случайных величин и функций. Так же математические модели различают по применению к различным отраслям науки.

Рассмотрим следующую классификацию математических моделей6. Все математические модели разобьем условно на четыре группы.

I. ^ Модели прогноза или расчетные модели без управления. Их можно разделить на стационарные и динамические.

Основное назначение этих моделей: зная начальное состояние и информацию о поведение на границе, дать прогноз о поведении системы во времени и в пространстве. Такие модели могут быть и стохастическими.

Как правило, модели прогнозирования описываются алгебраическими, трансцендентными, дифференциальными, интегральными, интегро-дифференциальными уравнениями и неравенствами. Примерами могут служить модели распределения тепла, электрического поля, химической кинетики, гидродинамики.

II. ^ Оптимизационные модели. Их так же разбивают на стационарные и динамические. Стационарные модели используются на уровне проектирования различных технологических систем. Динамические – как на уровне проектирования, так и, главным образом, для оптимального управления различными процессами – технологическими, экономическими и др.

В задачах оптимизации имеется два направления. К первому относятся детерминированные задачи. Вся входная информация в них является полностью определяемой.

Второе направление относится к стохастическим процессам. В этих задачах некоторые параметры носят случайный характер или содержат элемент неопределенности. Многие задачи оптимизации автоматических устройств, например, содержат параметры в виде случайных помех с некоторыми вероятностными характеристиками.

Методы отыскания экстремума функции многих переменных с различными ограничениями часто называются методами математического программирования. Задачи математического программирования – одни из важных оптимизационных задач.

В математическом программировании выделяются следующие основные разделы7:

  • ^ Линейное программирование. Целевая функция линейна, а множество, на котором ищется экстремум целевой функции, задается системой линейных равенств и неравенств.

  • Нелинейное программирование. Целевая функция нелинейная и нелинейные ограничения.

  • Выпуклое программирование. Целевая функция выпуклая и выпуклое множество, на котором решается экстремальная задача.

  • Квадратичное программирование. Целевая функция квадратичная, а ограничения – линейные равенства и неравенства.

  • Многоэкстремальные задачи. Задачи, в которых целевая функция имеет несколько локальных экстремумов. Такие задачи представляются весьма проблемными.

  • ^ Целочисленное программирование. В подобных задачах на переменные накладываются условия целочисленности.

Как правило, к задачам математического программирования неприменимы методы классического анализа для отыскания экстремума функции нескольких переменных.

Модели теории оптимального управления – одни из важных в оптимизационных моделях. Математическая теория оптимального управления относится к одной из теорий, имеющих важные практические применения, в основном, для оптимального управления процессами.

Различают три вида математических моделей теории оптимального управления8. К первому виду относятся дискретные модели оптимального управления. Традиционно такие модели называют моделями динамического программирования. Широко известен метод динамического программирования Беллмана. Ко второму типу относятся модели, описываемые задачам Коши для систем обыкновенных дифференциальных уравнений. Их часто называют моделями оптимального управления системами с сосредоточенными параметрами. Третий вид моделей описывается краевыми задачами, как для обыкновенных дифференциальных уравнений, так и для уравнений в частных производных. Такие модели называют моделями оптимального управления системами с распределенными параметрами.

III. ^ Кибернетические модели. Этот тип моделей используется для анализа конфликтных ситуаций.

Предполагается, что динамический процесс определяется несколькими субъектами, в распоряжении которых имеется несколько управляющих параметров. С кибернетической системой ассоциируется целая группа субъектов со своими собственными интересами.

IV. Вышеописанные типы моделей не охватывают большого числа различных ситуаций, таких, которые могут быть полностью формализированы. Для изучения таких процессов необходимо включение в математическую модель функционирующего «биологического» звена – человека. В таких ситуациях используется имитационное моделирование, а также методы экспертиз и информационных процедур.
^

Философия кибернетики


Осмысление кибернетических понятий с позиции философии будет способствовать более успешному осуществлению теоретических и практических работ в этой области, создаст лучшие условия для эффективной работы и научного поиска в этой области познания.

Кибернетика как перспективная область научного познания привлекает к себе все большее внимание философов. Положения и выводы кибернетики включаются в их области знания, которые в значительной степени определяют развитие современной теории познания. Как справедливо отмечают отечественные исследователи, кибернетика, достижения которой имеет громадное значение для исследования познавательного процесса, по своей сущности и содержанию должна входить в теорию познания.

Исследование методологического и гносеологического аспектов кибернетики способствует решению многих философских проблем. В их числе - проблемы диалектического понимания простого и сложного, количества и качества, необходимости и случайности, возможности и действительности, прерывности и непрерывности, части и целого. Для развития самих математики и кибернетики важное значение имеет применение к материалу этих наук ряда фундаментальных философских принципов и понятий, применение, обязательно учитывающее специфику соответствующих областей научного знания. Среди этих принципов и понятий следует особо выделить положение отражения, принцип материального единства мира конкретного и абстрактного, количества и качества, нормального и содержательного подхода к познанию и др.
Философская мысль уже много сделала в анализе аспектов и теоретико-познавательной роли кибернетики. Было показано, сколь многообещающим в философском плане является рассмотрение в свете кибернетики таких вопросов и понятий, как природа информации, цель и целенаправленность, соотношение детерминизма и теологии, соотношение дискретного и непрерывного, детерминистского и вероятностного подхода к науке.

Нужно сказать и о большом значении кибернетики для построения научной картины мира. Собственно предмет кибернетики - процессы, протекающие в системах управления, общие закономерности таких процессов.
1   2   3   4   5   6   7

Поиск по сайту:

Загрузка...


База данных защищена авторским правом ©ДуГендокс 2000-2014
При копировании материала укажите ссылку
наши контакты
DoGendocs.ru
Рейтинг@Mail.ru